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A B S T R A C T

Eu3+-activated inorganic phosphors are widely used in general lighting and display technologies due to their 
strong orange/red (5D0 → 7F1,2) emissions with wavelengths shorter than 630 nm. However, phosphors activated 
by Eu3+ that strongly emit in the deep-red region, driven by the 5D0 → 7F4 transition (>700 nm), are relatively 
uncommon. This limitation hinders their applicability in horticultural light emitting diodes, where light in the 
photosynthetically active radiation range, particularly deep-red photons, is crucial for regulating plant growth. 
Hereby, we prepared Bi3+-doped Sr2Gd0.2Eu0.8F7 nanoparticles using the hydrothermal synthesis method, to 
address this challenge. Introducing Bi3+ significantly enhanced Eu3+ emission under near-UV excitation, with an 
optimal 1 mol% Bi3+ concentration yielding a 250 % increase in integrated emission intensity and a long 
emission lifetime of 9.3 ms compared to the Bi3+-free sample. The optimized phosphor also demonstrated 
exceptional thermal stability, retaining 93 % of its room-temperature emission at 200 ◦C. These results highlight 
that Bi3+-doping of Sr2Gd0.2Eu0.8F7 host is a promising strategy for designing thermally robust, deep-red-emitting 
nanophosphors. Such properties underline their potential for next-generation horticultural LED applications 
aimed at improving plant growth efficiency.

Introduction

Lanthanide-based phosphors emit electromagnetic radiation across a 
broad spectral range and are versatile for advanced technologies. They 
require host matrices that are non-hygroscopic to maintain stability in 
air and aqueous environments, have low phonon frequencies to mini
mize non-radiative losses, and possess wide band gaps to facilitate 
efficient dopant transitions while limiting self-absorption. Fluoride 
compounds have gained significant attention recently due to their ad
vantageous properties, including low phonon energies (300–500 cm− 1), 
high optical transmittance, and chemical stability. Even though 
lanthanide (Ln3+)-doped alkaline-tetrafluorides with the following for
mula − ALnF4 (A=Na, K, Li; Ln3+=Y, La, Gd, Lu) − are among the most 
widely used for efficient luminescence, they exhibit certain limitations 
in applications that require nanoparticles [1–6]. Recently, the alkali- 
earth-lanthanide based fluorides (M2LnF7, M=Ca, Sr, Ba; Ln3+=Y, La, 
Gd, Lu) have emerged as advantageous for biomedical imaging, tem
perature sensing, photothermal treatment and light-emitting diode 
(LED) applications, exhibiting extremely high up conversion (UC) and 
down conversion (DC) luminescence, depending on the activator ion 

[7–14].
Gadolinium-based fluorides are promising phosphor hosts because 

lanthanide ions can readily substitute Gd3+ due to their similar valence 
and comparable ionic radii. Additionally, Gd3+ exhibits a strong ab
sorption peak around 273 nm, which allows it to transfer energy to the 
activator through nonradiative transitions [15]. Up to now, Sr2GdF7 has 
been mostly used as a host for UC luminescent activators Yb3+/Er3+/ 
Tm3+/Ho3+ [13,16–21]. Doping of Sr2GdF7 with Eu3+ ions was first 
performed by Runowski et al. [22], with concentrations of up to 30 mol 
%, revealing the intense red emission.

In modern agriculture and food production, there is an increasing 
focus on developing and implementing efficient LED lighting systems 
that promote optimal indoor plant growth. The objective is to maximize 
the conversion of electrical energy into the Photosynthetically Active 
Radiation (PAR) spectrum, which spans the range of 400 to 700 nm and 
is essential for driving photosynthesis in plants. Recent studies have 
demonstrated that deep-red photons (700–750 nm) can work in synergy 
with higher-energy photons to enhance photochemical efficiency in 
plants [23–28]. This combination can also improve the flavor quality of 
crops by mitigating the bitterness often associated with excessive leafy 
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growth in vegetables like lettuce and spinach. In this context, LED 
lighting that closely aligns with the PAR spectrum and includes addi
tional deep-red components is crucial for future agricultural production.

Trivalent europium − Eu3+− is a lanthanide ion that emits orange, 

red, and deep red light, corresponding to electronic transitions from its 
excited 5D0 level to the ground 7FJ (J = 1, 2, 3, and 4) levels [29]. Owing 
to the distinctive electronic configuration of trivalent bismuth ions and 
their tunable luminescent properties, co-doping with Bi3+ has the po
tential to improve the performance of Eu3+ activated phosphors. Bi3+

ions not only enhance the emission of the primary dopant under UV 
excitation through their sensitizing and energy transfer capability but 
may also enable dual-emission and color-tunable photoluminescence 
[30–35].

In our recent research, we synthesized Sr2GdF7 powders with 
different contents of Eu3+ ions (0–100 mol%), demonstrating that 
continuous exchange of Gd3+ with Eu3+ does not change the structural 
type of the compound [36]. Also, it was shown that Eu3+ addition causes 
perpetual emission intensity increase, very high light output, and 
temperature-stable PL spectra that match the red and far-red absorption 
spectra of phytochrome plant photoreceptors. Herein, we prepared 
Sr2Gd0.2Eu0.8F7 nanopowders doped with different Bi3+ contents (0.25, 
1, 5, and 10 mol%), for the purpose of determining the influence of Bi3+

addition on nanophosphors suitable for horticulture LEDs.

Table 1 
The exact amounts of precursors needed for the synthesis of 0.0025 mol of Sr2Gd0.2-xEu0.8BixF7 (x = 0, 0.0025, 0.01, 0.05, 0.10).

Molecular 
formula

x(mol%) Abbreviated name Precursor mass (g)

Bi(NO3)3 Sr(NO3)2 Eu(NO3)3⋅ 
6H2O

Gd(NO3)3⋅ 
6H2O

NH4F EDTA-2Na

Sr2Gd0.2Eu0.8F7 0 SGEF − 1.0582 0.8922 0.1947 1.1111 0.9306
Sr2Gd0.1975Eu0.8Bi0.0025F7 0.25 SGEF_0.25Bi 0.0025 0.1922
Sr2Gd0.19Eu0.8Bi0.01F7 1 SGEF_1Bi 0.0099 0.1849
Sr2Gd0.15Eu0.8Bi0.05F7 5 SGEF_5Bi 0.0494 0.1460
Sr2Gd0.1Eu0.8Bi0.10F7 10 SGEF_10Bi 0.0988 0.0973

Fig. 1. (a) XRD patterns of the synthesized SGEF_x Bi (x = 0, 0.25, 1, 5, 10 mol%) nanophosphors; (b) three-dimensional schematic presentation of the 
Sr2Gd0.2Eu0.8F7 structure; (c) SEM micrograph and (d) the particle size distribution of the representative SGEF_1Bi nanophosphor, and the formulas for calculating 
the average particle size.

Table 2 
Structural parameters of the SGEF_xBi (x = 0, 0.25, 1, 5, 10 mol%) 
nanophosphors.

ICDD card 
01–083- 
3680

SGEF SGEF_0.25Bi SGEF_1Bi SGEF_5Bi SGEF_10Bi

a = b = c (Å) 5.7761 
(4)

5.7818(5) 5.7688 
(2)

5.7621 
(3)

5.7628(3)

CS (nm) 18.6(2) 17.7(2) 21.2(4) 19.9(4) 20.5(5)
Strain 0.270(5) 0.160(7) 0.060 

(12)
0.050 
(13)

0.090(13)

*Rwp (%) 5.63 5.48 4.51 4.52 4.80
**Rp (%) 4.31 4.09 3.15 3.29 3.46
***Re (%) 2.65 2.61 2.72 2.87 2.80
****GOF 2.1224 2.1010 1.6557 1.5715 1.7164

* Rwp—the weighted profile factor; ** Rp—the profile factor; *** Re—the ex
pected weighted profile factor; ****GOF—the goodness of fit.
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Experimental

Materials

Strontium nitrate (Sr(NO3)2, Thermo Scientific, 99 % min), Gd 
(NO3)3⋅6H2O (Thermo Scientific, 99.9 %), Eu(NO3)3⋅6H2O (Alfa Aesar, 
99.9 %), Bi(NO3)3 (basic, Kemika, PA), disodium ethylenediaminetet
raacetate dihydrate (EDTA-2Na, C10H14N2O8Na2⋅2H2O, Kemika, 99 %) 
and NH4F (Alfa Aesar, 98 %), 25 % ammonium solution (NH4OH, 
Fisher), nitric acid (65 % HNO3, Macron fine chemicals), and deionized 
water were used as starting materials without further purification.

Hydrothermal synthesis

The powders of Sr2Gd0.2-xEu0.8BixF7 (x = 0, 0.0025, 0.01, 0.05, 0.10) 
were prepared using the hydrothermal method. The detailed synthesis 

description and the procedure scheme were given in [36]. Briefly, bis
muth nitrate was dissolved in hot concentrated nitric acid, while the 
other precursors were dissolved in deionized water. EDTA-2Na was used 
as a stabilizing agent by forming Sr- and Gd-complexes to prevent par
ticle aggregation during reaction. All precursor solutions were com
bined, and the pH was adjusted to ~ 6 by adding 25 % ammonium 
hydroxide solution dropwise. The hydrothermal reaction was conducted 
in a 100-mL Teflon-lined autoclave at 180 ◦C for 20 h. After cooling, the 
precipitates were centrifuged, washed twice with deionized water, and 
once with a 1:1 ethanol–water mixture to remove any residuals. Finally, 
the samples were air-dried at 70 ◦C for 4 h. The Eu3+ concentration of 80 
mol% was chosen as the one that enables maximal emission intensity in 
Sr2GdF7:Eu3+ nanophosphors [36]. Therefore, the phosphor host is 
Sr2Gd0.2Eu0.8F7, with the abbreviated name SGEF. Table 1 provides the 
precise quantities of precursors used for the synthesis of 0.0025 mol 
samples.

Fig. 2. The photoluminescence of SGEF_xBi, x = 0, 0.25, 1, 5, 10 mol% nanophosphors: (a) excitation spectra under a λem = 593 nm emission. Inset: excitation 
spectra under a λem = 311 nm emission; (b) emission spectra under a λexc = 391 nm excitation; (c) the asymmetry ratio of 5D0 → 7F2 and 5D0 → 7F1 transitions versus 
Bi3+ concentration; (d) the integrated emission intensity as a function of Bi3+ concentration; (e) the excited state decay curves as a function of Bi3+ concentration; (f) 
the lifetime values depending on the Bi3+ content.
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Characterization

X-ray diffraction (XRD) analyses were conducted using a Rigaku 
SmartLab system with Cu Kα radiation at 30 mA and 40 kV to confirm 
the phase purity and crystallinity of the samples. Diffraction data were 

collected in the 2θ range of 10◦ to 90◦ with a step size of 0.02◦ and a 
counting time of 1◦/min, while the structural analysis was performed 
using the integrated PDXL2 package software. A three-dimensional 
schematic view of the crystal structure is built via the Diamond 4.6.8 
software. The powder microstructure was examined using a Mira3 
Tescan field emission scanning electron microscope (FE-SEM) operating 
at an accelerating voltage of 20 kV and the average particle size was 
calculated using ImageJ software. Diffuse reflectance measurements 
were performed with the Shimadzu UV-2600 (Shimadzu Corporation, 
Tokyo, Japan) spectrophotometer equipped with an integrating sphere 
(ISR-2600), using BaSO4 as the standard reference. Photoluminescence 
measurements were performed using a Fluorolog-3 Model FL3-221 

Fig. 3. (a) Temperature-dependent emission spectra of the SGEF_1Bi nanophosphor, in the temperature range 25–200 ◦C with a 25 ◦C step; (b) thermal stability of 
photoluminescence emission of the SGEF_1Bi nanophosphor. The inset shows temporal stability of the two most dominant emission peaks; (c) thermal cycling test of 
the SGEF_1Bi nanophosphor, performed over 10 repeated cycles between 50 ◦C and 150 ◦C; (d) calculated chromaticity coordinates and their position in the CIE 
color diagram.

Table 3 
Colorimetric parameters of SGEF_x Bi, (x = 0, 0.25, 1, 5, 10 mol%) emission.

Bi3þ concentration (mol%) 0 0.25 1 5 10

x 0.598 0.601 0.601 0.600 0.602
y 0.388 0.389 0.387 0.389 0.389

Fig. 4. (a) LED device, fabricated from a SGEF_1Bi nanophosphor with a binder on a 395 nm-emitting semiconductor chip, displaying pinkish violet light; (b) 
emission spectrum of the as-prepared LED device. The dashed line represents the emission spectrum of a 395 nm chip. The dip at 391 nm corresponds to the 7F0 → 5L6 
absorption transition of Eu3+. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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spectrofluorometer system (Horiba JobinYvon), equipped with a 450 W 
Xenon lamp and TBX detector for steady-state emission measurements, 
while for emission decay measurements, a xenon–mercury pulsed lamp 
was utilized. The excitation spectra were recorded at the emission 
wavelength of 593 nm, with a long-pass 550 nm filter mounted in front 
of the detector, whereas the emission spectra were observed upon a 391 
nm excitation. Quantum efficiency measurements were carried out 
using a custom-built setup consisting of an Ocean Insight IDP-REF 38.1 
mm integrating sphere, fiber-coupled to an Ocean Insight LSM-405A 
LED light source at the reference port and an OCEAN-FX-XR1-ES 
extended-range spectrometer at the sample port of the sphere, with 
BaSO4 employed as the standard reference. Thermal stability of the 
photoluminescent emission within the temperature range of 25–200 ◦C 
was estimated using the OceanOptics spectrofluorometric system upon a 
365 nm excitation (OceanOptics LED, L365A), coupled with a Micro
Optik heating stage. The thermal cycling test was carried out through 10 
consecutive cycles of heating and natural cooling in the temperature 
range of 50 ◦C to 150 ◦C. A 395 nm LED chip with 100 mW optical power 
was used to excite a mixture of luminescent powder with transparent 
high-temperature inorganic binder (Cerambind 643–2 from Aremco). 
The emission spectrum of as-prepared LED device was recorded with the 
OceanOptics spectrofluorometric system.

Results and discussion

Structure and morphology analysis

The XRD patterns of the synthesized SGEF_xBi (x = 0, 0.25, 1, 5, 10 
mol%) nanophosphors are displayed in Fig. 1(a), together with the 
corresponding ICDD 01–083-3680 data. It was already proved that both 
Sr2GdF7 and Sr2EuF7 crystallize in the form of cubic Fm 3 m structure 
[36]. In consistence with this, all SGEF_xBi samples are single-phased 
with the cubic structure and Fm 3 m symmetry group. Inside this 
structural type, presented schematically in three-dimensional view in 
Fig. 1(b), Sr2+ and Gd3+ ions both occupy Wyckoff site 4a with m-3 m 
symmetry, and F- ions reside in Wyckoff site 8c with − 43 m symmetry. 
In an ideal fluorite-type MX2 compound, cations fill 8-coordinate cubic 
sites, and anions occupy 4-coordinate tetrahedral sites. Nevertheless, in 
Sr2GdF7, the partial occupancy of both cation and anion sites leads to 
deviations from these ideal geometries, resulting in a variety of local 
coordination environments for the constituent species [36]. When it 
comes to the structural type of Sr2GdF7 and related compounds, there is 
a discrepancy between data in different literature reports. Some articles 
report on cubic Fm 3 m structure [22,37,38] and others have a tetragonal 
structure [19,20,39–41]. However, in several articles that claim the 
tetragonal structure of Sr2GdF7, the XRD data lack the expected 
tetragonal superstructure peaks and instead match a cubic structure −
consistent with the materials studied here. We can assume that further 
high-temperature annealing of these hydrothermally synthesized sam
ples may induce a transition from the disordered cubic fluorite-type 
structure to an ordered tetragonal phase. The ionic radii of Gd3+

(Gd3+
VIII = 1.053Å), Eu3+ (Eu3+

VIII = 1.066Å) and Bi3+ (Bi3+VIII =

1.17Å) [42] are comparable, and they have the same oxidation state. 
Although Bi3+ ions could theoretically substitute either Gd3+ or Eu3+

ions, the systematic decrease in Gd3+ content with increasing Bi3+

concentration (refer to Table 1) indicates a preferential substitution of 
Gd3+ by Bi3+ in the SGEF host lattice. This is also supported by the fact 
that no additional phases with Eu3+ were detected. The structural pa
rameters of the SGEF_xBi nanophosphors, determined using the built-in 
PDXL2 package software, are presented in Table 2. The unit cell 
parameter and crystallite size (~20 nm) do not change significantly with 
the Bi3+ co-doping, compared to the SGEF sample.

The scanning electron microscopy image of the representative 
SGEF_1Bi sample in Fig. 1(c) The microstructure observed at 100 k ×
magnification reveals agglomerated nanoparticles with quasi-spherical 

morphologies. The particles form porous, loosely packed clusters, 
typical for fluoride-based nanophosphors synthesized via wet-chemical 
routes [33]. The particle size was estimated by measuring the diam
eter of more than 100 particles and fitting the histogram in Fig. 1(d)
using a lognormal distribution. The particles exhibit a size distribution 
in 30–100 nm range. The average particle size was calculated to be 51 ±
4 nm. This value is higher than the crystallite size obtained from the XRD 
data, suggesting that each particle consists of several crystallites.

Photoluminescence spectra and decay times

The photoluminescence excitation spectra of the SGEF_xBi (x = 0, 
0.25, 1, 5, 10 mol%) samples, recorded at the fixed emission wavelength 
of 593 nm, are presented in Fig. 2(a). All the peaks correspond to the 
intra-4f electronic transitions of the Eu3+ ion and are assigned according 
to literature [22,36,43,44]. In contrast to previously reported data [36], 
characteristic gadolinium peaks at 273 nm and 311 nm were not 
detected in the excitation spectra. Although the Eu3+ transition at 273 
nm, noted as 7F0 → 3H6 in Fig. 2(a), coincides with the 8S7/2 → 6IJ 
transition of Gd3+, its absence was proved by recording the excitation 
spectra under a 311 nm-emission (shown in Fig. 2(a), inset). This means 
there is no energy transfer from Gd3+ to Eu3+ ions, probably due to the 
prevalence of Eu3+ ions in the SGEF host. The addition of Bi3+ as a co- 
dopant causes a moderate increase in excitation intensity of Eu3+

transitions.
The samples’ emission spectra upon a 391 nm-excitation (Fig. 2(b)) 

expose the typical 4f − 4f transitions of Eu3+, located around 593 nm 
(5D0 → 7F1), 613 nm (5D0 → 7F2), 650 nm (5D0 → 7F3), 698 nm (5D0 → 
7F4 transition) [29,44]. The 5D0 → 7F1 transition in Eu3+ is a magnetic- 
dipole transition that is insensitive to the surrounding environment. In 
contrast, the 5D0 → 7F2 transition is a forced electric-dipole transition 
known for its hypersensitivity to changes in the local environment 
around the Eu3+ ions. The emission spectra of all the samples exhibit the 
atypically intense 5D0 → 7F4 emission peak around 700 nm, adding a 
favorable spectral window that coincides with the deep-red part of the 
PAR spectrum [24].

The emission from the 5D0 → 7F1 transition dominates the emission 
spectrum when Eu3+ ions are situated in crystallographic sites with high 
symmetry. Our experimental findings are consistent with these pre
dictions, as the 5D0 → 7F1 transition exhibits the utmost intensity, and 
the XRD patterns indicate the structure of high symmetry. A valuable 
indicator of the variations in local symmetry surrounding the Eu3+ ion is 
the asymmetry ratio, R. It is defined as the ratio of intensities of the 5D0 
→ 7F2 and 5D0 → 7F1 transitions, by a following equation: [45]: 

R =
I( 5D0→ 7F2)

I( 5D0→ 7F1)
(1) 

Asymmetry ratio values below 1 indicate that the magnetic dipole 
transition dominates the emission spectra [45]. As shown in Fig. 2(c) the 
asymmetry ratio exhibits a change with the Bi3+ content increase, sug
gesting that the local symmetry of the emitting ion is slightly altered. 
The highest asymmetry ratio is observed for the SGEF_1Bi sample.

Fig. 2(d) unveils that Bi3+ co-doping of the SGEF nanophosphor 
causes emission intensity increase for all examined concentrations, 
while for the SGEF_1Bi sample, the integral emission intensity enhances 
by 250 %, compared to the Bi-free sample.

To investigate the energy transfer from Bi3+ to Eu3+, the diffuse 
reflectance spectrum, the photoluminescence emission spectra under a 
265 nm excitation, along with the corresponding explanation, are pro
vided in the Supplementary Information (Fig. S1).

Fig. 2(e) demonstrates the normalized photoluminescence lifetime 
decay curves of SGEF nanophosphors with varying bismuth concentra
tions, measured at room temperature. The decay profiles were analyzed 
by fitting the experimental data to a simple single-exponential function 
to determine the corresponding lifetime (τ) values [46]. 
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I(t) = I0e−
t
τ (2) 

where I(t) represents the corresponding emission intensity at time t, I0 
represents the corresponding emission intensity at time t = 0 (ideally 
I0 = 1 for normalized I(t)), and τ is the emission decay constant (the 
excited state lifetime). All the excited 5D0 state lifetimes are quite long 
and alter with the Bi3+ content, resembling the emission intensity 
change (see Fig. 2(f)). The optimized SGEF_1Bi sample exhibits a life
time value of 9.3 ms.

Similar trends in Figs. 2(c), (d) and (f) indicate that Bi3+ co-doping 
causes the lattice distortion that further leads to the breaking of the 
partially forbidden transitions of Eu3+ ions and enhances photo
luminescent properties [47]. Generally, when the Bi3+ content in
creases, both the emission intensity and lifetime decrease. This decline 
may also be attributed to the formation of Bi3+ ion clusters at higher 
doping levels, which introduce numerous defect states within the crystal 
lattice and promote nonradiative recombination pathways [48]. In our 
study, the integrated emission intensity and lifetime at x = 10 are higher 
than at x = 5 mol% (see Figs. 2(b), (d), (f)). While the 2 % increase in 
lifetime falls within the range of experimental error, the integrated in
tensity shows a more pronounced increase of about 13 %. This indicates 
that lattice distortion, along with the relaxation of forbidden Eu3+

transitions, is the principal factor underlying the unusually enhanced 
emission intensity observed in the 5–10 mol% Bi3+ concentration range.

As reported previously, the Sr2Gd0.2Eu0.8F7 phosphor (Sr2GdF7:80 
mol% Eu3+) exhibits a quantum efficiency of 60.4 % [36]. In compari
son, the Bi3+-doped counterpart (Sr2Gd0.2Eu0.8F7:1 mol% Bi) achieves a 
higher quantum efficiency of 67.2 %, clearly demonstrating the positive 
influence of Bi3+ incorporation on the luminescent performance.

Thermal stability and LED fabrication of the optimized SGEF_1Bi 
nanophosphor

For horticulture LED applications, the appropriate color of the light 
source and the thermal stability of the photoluminescence emission are 
important requirements. According to some LED manufacturers, 100 ◦C 
is typically regarded as the maximum operating temperature for LEDs 
[49–51], even though temperature stability up to 150 ◦C is often re
ported in the literature [52–54]. To evaluate the thermal stability of the 
photoluminescence emission, steady-state temperature-dependent pho
toluminescence measurements were conducted over the 25–200 ◦C 
range with a 25 ◦C step using the SGEF_1Bi sample pressed into a pellet. 
The resulting spectra, displayed in Fig. 3 (a), reveal a minor decrease of 
overall emission intensity. From these spectra, thermal stability of the 
optimized sample is derived and shown in Fig. 3(b). It is evident that 
SGEF_1Bi demonstrates outstanding thermal stability, retaining 99 % of 
its room-temperature integrated emission intensity at 100 ◦C and 
maintaining 93 % of its initial emission even at a temperature of 200 ◦C. 
The inset in Fig. 3(b) displays good temporal stability of the two most 
dominant emission peaks – at 593 nm (5D0 → 7F1 transition) and 700 nm 
(5D0 → 7F4 transition), extracted from spectra recorded every 5 min, 
during 500 min. Thermal cycling test of the SGEF_1Bi nanophosphor, 
displayed in Fig. 3(c), proves the thermal stability is preserved even after 
10 consecutive heating–cooling cycles.

To evaluate the color of the synthesized nanophosphors, CIE (Com
mission Internationale de l’Éclairage) chromaticity coordinates were 
derived from the photoluminescence emission spectra. They provide a 
standard method for representing and describing colors, and the color is 
typically plotted using the (x, y) coordinates on the CIE 1931 chroma
ticity diagram. The CIE chromaticity coordinates, calculated from the 
samples’ emission spectra are shown in Fig. 3(d) and Table 3. The results 
reveal that the coordinates remain nearly the same across all composi
tions, consistently falling within the orange–red region of the chroma
ticity diagram, thereby ensuring stable emission color.

Finally, the powder sample with the highest emission intensity, 

SGEF_1Bi, was mixed with a ceramic binder and pressed onto a 395 nm 
near-UV LED chip to authenticate the application potential of these 
phosphors in LEDs. Photographs of the fabricated LED device, shown in 
Fig. 4(a), display strong pinkish violet light emission when the power 
supply is on. The emission spectrum of this LED system is presented in 
Fig. 4(b). The characteristic europium emission transitions in the red 
and deep-red spectral range are clearly visible. Dashed line in Fig. 4(b). 
represents the emission spectrum of a 395 nm chip. Two peaks around 
400 nm are the result of the chip’s emission and europium’s absorption 
transition of 7F0 → 5L6 at 391 nm (refer to excitation spectrum in Fig. 2 
(a)). Eu3+ strongly absorbs energy from the chip’s emission peak, 
resulting in a doublet near 400 nm.

Conclusion

This study reports the synthesis of Sr2Gd0.2Eu0.8F7 nanoparticles 
doped with varying concentrations of Bi3+ by the hydrothermal method. 
The excitation spectra of SGEF_xBi nanophosphors (λem = 593 nm) 
exhibit characteristic intra-4f electronic transitions of the Eu3+ ions. The 
emission spectra upon 391 nm excitation unveil orange/red and deep- 
red emission of Eu3+, with the most dominant 5D0 → 7F1 transition (as 
expected for the cubic structure), and the atypically intense 5D0 → 7F4 
transition. The addition of Bi3+ ions in different concentrations in SGEF 
phosphors induces enhancement of Eu3+ emission, with 1 mol% being 
the optimal concentration. For the optimized sample, the integrated 
emission intensity amplifies by a stunning 250 %, while further addition 
of Bi3+ (up to 10 mol%) leads to the improvement of 60 %. The calcu
lated asymmetry ratio changes moderately with Bi3+ content, indicating 
a disturbance in the local symmetry around the emitting Eu3+ ions. The 
luminescence lifetime exhibits a similar dependence on Bi3+ concen
tration. However, above 1 mol% Bi3+ doping, emission intensities and 
lifetime values decrease due to concentration quenching and Bi3+ clus
tering, which introduces defects and promotes nonradiative recombi
nation. The calculated CIE coordinates are in the red portion of the color 
diagram, while the thermal stability of emission is exceptional – 99 % of 
the room-temperature emission is maintained at 100 ◦C and 93 % at a 
temperature of 200 ◦C. These findings prove that Bi3+ activated 
Sr2Gd0.2Eu0.8F7 nanophosphors provide favorable spectral features, 
suitable for LED applications in horticulture. Upcoming research efforts 
will focus on evaluation of the impact of these nanophosphors on plant 
growth in relevant environment.
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