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ARTICLE INFO ABSTRACT

Keywords: Eu®*-activated inorganic phosphors are widely used in general lighting and display technologies due to their

Ph(s)iphors strong orange/red (°Dg — 7F1,2) emissions with wavelengths shorter than 630 nm. However, phosphors activated

Ef; by Eu®* that strongly emit in the deep-red region, driven by the °Dy — ”F, transition (700 nm), are relatively
1

Heavily-doped fluorides uncommon. This limitation hinders their applicability in horticultural light emitting diodes, where light in the
Deep-red emission photosynthetically active radiation range, particularly deep-red photons, is crucial for regulating plant growth.
LED Hereby, we prepared Big’*—doped SryGdp 2Eug sF7 nanoparticles using the hydrothermal synthesis method, to
address this challenge. Introducing Bi>* significantly enhanced Eu®* emission under near-UV excitation, with an
optimal 1 mol% Bi®" concentration yielding a 250 % increase in integrated emission intensity and a long
emission lifetime of 9.3 ms compared to the Bi>*-free sample. The optimized phosphor also demonstrated
exceptional thermal stability, retaining 93 % of its room-temperature emission at 200 °C. These results highlight
that Bi3+—doping of SroGdg 2Eug gF7 host is a promising strategy for designing thermally robust, deep-red-emitting
nanophosphors. Such properties underline their potential for next-generation horticultural LED applications

aimed at improving plant growth efficiency.

Introduction

Lanthanide-based phosphors emit electromagnetic radiation across a
broad spectral range and are versatile for advanced technologies. They
require host matrices that are non-hygroscopic to maintain stability in
air and aqueous environments, have low phonon frequencies to mini-
mize non-radiative losses, and possess wide band gaps to facilitate
efficient dopant transitions while limiting self-absorption. Fluoride
compounds have gained significant attention recently due to their ad-
vantageous properties, including low phonon energies (300-500 cm™1),
high optical transmittance, and chemical stability. Even though
lanthanide (Ln3+)-doped alkaline-tetrafluorides with the following for-
mula — ALnF, (A=Na, K, Li; Ln3"=Y, La, Gd, Lu) — are among the most
widely used for efficient luminescence, they exhibit certain limitations
in applications that require nanoparticles [1-6]. Recently, the alkali-
earth-lanthanide based fluorides (M,LnF;, M=Ca, Sr, Ba; Ln®t=Y, La,
Gd, Lu) have emerged as advantageous for biomedical imaging, tem-
perature sensing, photothermal treatment and light-emitting diode
(LED) applications, exhibiting extremely high up conversion (UC) and
down conversion (DC) luminescence, depending on the activator ion

* Corresponding authors.

[7-14].

Gadolinium-based fluorides are promising phosphor hosts because
lanthanide ions can readily substitute Gd** due to their similar valence
and comparable ionic radii. Additionally, Gd>* exhibits a strong ab-
sorption peak around 273 nm, which allows it to transfer energy to the
activator through nonradiative transitions [15]. Up to now, SroGdF7 has
been mostly used as a host for UC luminescent activators Yb>*/Er®*/
Tm3*/Ho®" [13,16-21]. Doping of Sr,GdF; with Eu®" ions was first
performed by Runowski et al. [22], with concentrations of up to 30 mol
%, revealing the intense red emission.

In modern agriculture and food production, there is an increasing
focus on developing and implementing efficient LED lighting systems
that promote optimal indoor plant growth. The objective is to maximize
the conversion of electrical energy into the Photosynthetically Active
Radiation (PAR) spectrum, which spans the range of 400 to 700 nm and
is essential for driving photosynthesis in plants. Recent studies have
demonstrated that deep-red photons (700-750 nm) can work in synergy
with higher-energy photons to enhance photochemical efficiency in
plants [23-28]. This combination can also improve the flavor quality of
crops by mitigating the bitterness often associated with excessive leafy
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Table 1
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The exact amounts of precursors needed for the synthesis of 0.0025 mol of SryGdg 2 xEug gBiyF7 (x = 0, 0.0025, 0.01, 0.05, 0.10).

Molecular x(mol%) Abbreviated name Precursor mass (g)
formul
ormuia Bi(NOs)3 Sr(NOs), Eu(NO3)s- GA(NO3)s- NH,F EDTA-2Na
6H,0 6H,0
SryGdg 2Fug sF7 0 SGEF - 1.0582 0.8922 0.1947 1.1111 0.9306
SryGdo 1975Eu0 8Bio 0025F7 0.25 SGEF_0.25Bi 0.0025 0.1922
Sr5Gdo 10EU0 sBio.01F7 1 SGEF_1Bi 0.0099 0.1849
SryGdo 150 sBio 0sF7 SGEF _5Bi 0.0494 0.1460
SryGdg 1Eug gBio 10F7 10 SGEF_10Bi 0.0988 0.0973
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Fig. 1. (a) XRD patterns of the synthesized SGEF x Bi (x = 0, 0.25, 1, 5, 10 mol%) nanophosphors; (b) three-dimensional schematic presentation of the
SroGdo 2Eug gF7 structure; (¢) SEM micrograph and (d) the particle size distribution of the representative SGEF_1Bi nanophosphor, and the formulas for calculating

the average particle size.

Table 2
Structural parameters of the SGEFxBi (x = 0, 0.25, 1, 5, 10 mol%)
nanophosphors.

ICDD card SGEF SGEF.0.25Bi  SGEF_1Bi  SGEF5Bi  SGEF_10Bi

01-083-

3680

a=b=c(A) 57761 5.7818(5) 5.7688 5.7621 5.7628(3)
(C)] 2) 3)

CS (nm) 18.6(2) 17.7(2) 21.2(4) 19.9(4) 20.5(5)

Strain 0.270(5)  0.160(7) 0.060 0.050 0.090(13)

(12) 13)

“Rwp (%) 5.63 5.48 4.51 4.52 4.80

“Rp (%) 4.31 4.09 3.15 3.29 3.46

““Re (%) 2.65 2.61 2.72 2.87 2.80

“"GOF 2.1224 2.1010 1.6557 1.5715 1.7164

- Rwp—the weighted profile factor; - R,—the profile factor; “* Re—the ex-
pected weighted profile factor; ~“GOF—the goodness of fit.

growth in vegetables like lettuce and spinach. In this context, LED
lighting that closely aligns with the PAR spectrum and includes addi-
tional deep-red components is crucial for future agricultural production.

Trivalent europium — Eu®"—is a lanthanide ion that emits orange,

red, and deep red light, corresponding to electronic transitions from its
excited 5D0 level to the ground 7F y(J =1, 2,3, and 4) levels [29]. Owing
to the distinctive electronic configuration of trivalent bismuth ions and
their tunable luminescent properties, co-doping with Bi>" has the po-
tential to improve the performance of Eu®" activated phosphors. Bi®*
ions not only enhance the emission of the primary dopant under UV
excitation through their sensitizing and energy transfer capability but
may also enable dual-emission and color-tunable photoluminescence
[30-35].

In our recent research, we synthesized SryGdF; powders with
different contents of Eu®" ions (0-100 mol%), demonstrating that
continuous exchange of Gd** with Eu®" does not change the structural
type of the compound [36]. Also, it was shown that Eu®" addition causes
perpetual emission intensity increase, very high light output, and
temperature-stable PL spectra that match the red and far-red absorption
spectra of phytochrome plant photoreceptors. Herein, we prepared
SroGdg 2Eug gF7 nanopowders doped with different Bi** contents (0.25,
1, 5, and 10 mol%), for the purpose of determining the influence of Bi®t
addition on nanophosphors suitable for horticulture LEDs.
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Fig. 2. The photoluminescence of SGEF xBi, x = 0, 0.25, 1, 5, 10 mol% nanophosphors: (a) excitation spectra under a Aey, = 593 nm emission. Inset: excitation
spectra under a Ay, = 311 nm emission; (b) emission spectra under a Aexc = 391 nm excitation; (c) the asymmetry ratio of 5Dy — ’F, and °Dg — ’F; transitions versus
Bi®* concentration; (d) the integrated emission intensity as a function of Bi>* concentration; (e) the excited state decay curves as a function of Bi®*" concentration; (f)

the lifetime values depending on the Bi** content.

Experimental
Materials

Strontium nitrate (Sr(NOs),, Thermo Scientific, 99 % min), Gd
(NO3)3-6H50 (Thermo Scientific, 99.9 %), Eu(NO3)3-6H50 (Alfa Aesar,
99.9 %), Bi(NO3)3 (basic, Kemika, PA), disodium ethylenediaminetet-
raacetate dihydrate (EDTA-2Na, C1oH;4N20gNay-2H50, Kemika, 99 %)
and NH4F (Alfa Aesar, 98 %), 25 % ammonium solution (NH4OH,
Fisher), nitric acid (65 % HNOs, Macron fine chemicals), and deionized
water were used as starting materials without further purification.

Hydrothermal synthesis

The powders of SroGdg 2.xEug gBixF7 (x = 0, 0.0025, 0.01, 0.05, 0.10)
were prepared using the hydrothermal method. The detailed synthesis

description and the procedure scheme were given in [36]. Briefly, bis-
muth nitrate was dissolved in hot concentrated nitric acid, while the
other precursors were dissolved in deionized water. EDTA-2Na was used
as a stabilizing agent by forming Sr- and Gd-complexes to prevent par-
ticle aggregation during reaction. All precursor solutions were com-
bined, and the pH was adjusted to ~ 6 by adding 25 % ammonium
hydroxide solution dropwise. The hydrothermal reaction was conducted
in a 100-mL Teflon-lined autoclave at 180 °C for 20 h. After cooling, the
precipitates were centrifuged, washed twice with deionized water, and
once with a 1:1 ethanol-water mixture to remove any residuals. Finally,
the samples were air-dried at 70 °C for 4 h. The Eu®* concentration of 80
mol% was chosen as the one that enables maximal emission intensity in
SryGdF,:Eu®* nanophosphors [36]. Therefore, the phosphor host is
SroGdg 2Eug gF7, with the abbreviated name SGEF. Table 1 provides the
precise quantities of precursors used for the synthesis of 0.0025 mol
samples.
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Fig. 3. (a) Temperature-dependent emission spectra of the SGEF_1Bi nanophosphor, in the temperature range 25-200 °C with a 25 °C step; (b) thermal stability of
photoluminescence emission of the SGEF_1Bi nanophosphor. The inset shows temporal stability of the two most dominant emission peaks; (c) thermal cycling test of
the SGEF_1Bi nanophosphor, performed over 10 repeated cycles between 50 °C and 150 °C; (d) calculated chromaticity coordinates and their position in the CIE

color diagram.

Table 3
Colorimetric parameters of SGEF x Bi, (x = 0, 0.25, 1, 5, 10 mol%) emission.

collected in the 26 range of 10° to 90° with a step size of 0.02° and a
counting time of 1°/min, while the structural analysis was performed
using the integrated PDXL2 package software. A three-dimensional

Bi*" concentration (mol%) 0 0.25 1 5 10 schematic view of the crystal structure is built via the Diamond 4.6.8

x 0.598  0.601 0.601 0.600  0.602 software. The powder microstructure was examined using a Mira3

y 0.388 0.389 0.387 0.389 0.389 Tescan field emission scanning electron microscope (FE-SEM) operating

at an accelerating voltage of 20 kV and the average particle size was

. calculated using ImageJ software. Diffuse reflectance measurements
Characterization . . . -

were performed with the Shimadzu UV-2600 (Shimadzu Corporation,

X-ray diffraction (XRD) analyses were conducted using a Rigaku
SmartLab system with Cu Ko radiation at 30 mA and 40 kV to confirm
the phase purity and crystallinity of the samples. Diffraction data were

Tokyo, Japan) spectrophotometer equipped with an integrating sphere
(ISR-2600), using BaSO4 as the standard reference. Photoluminescence
measurements were performed using a Fluorolog-3 Model FL3-221
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Fig. 4. (a) LED device, fabricated from a SGEF_1Bi nanophosphor with a binder on a 395 nm-emitting semiconductor chip, displaying pinkish violet light; (b)
emission spectrum of the as-prepared LED device. The dashed line represents the emission spectrum of a 395 nm chip. The dip at 391 nm corresponds to the "Fy — °Lg
absorption transition of Eu®*. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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spectrofluorometer system (Horiba JobinYvon), equipped with a 450 W
Xenon lamp and TBX detector for steady-state emission measurements,
while for emission decay measurements, a xenon-mercury pulsed lamp
was utilized. The excitation spectra were recorded at the emission
wavelength of 593 nm, with a long-pass 550 nm filter mounted in front
of the detector, whereas the emission spectra were observed upon a 391
nm excitation. Quantum efficiency measurements were carried out
using a custom-built setup consisting of an Ocean Insight IDP-REF 38.1
mm integrating sphere, fiber-coupled to an Ocean Insight LSM-405A
LED light source at the reference port and an OCEAN-FX-XR1-ES
extended-range spectrometer at the sample port of the sphere, with
BaSO4 employed as the standard reference. Thermal stability of the
photoluminescent emission within the temperature range of 25-200 °C
was estimated using the OceanOptics spectrofluorometric system upon a
365 nm excitation (OceanOptics LED, L365A), coupled with a Micro-
Optik heating stage. The thermal cycling test was carried out through 10
consecutive cycles of heating and natural cooling in the temperature
range of 50 °C to 150 °C. A 395 nm LED chip with 100 mW optical power
was used to excite a mixture of luminescent powder with transparent
high-temperature inorganic binder (Cerambind 643-2 from Aremco).
The emission spectrum of as-prepared LED device was recorded with the
OceanOptics spectrofluorometric system.

Results and discussion
Structure and morphology analysis

The XRD patterns of the synthesized SGEF xBi (x = 0, 0.25, 1, 5, 10
mol%) nanophosphors are displayed in Fig. 1(a), together with the
corresponding ICDD 01-083-3680 data. It was already proved that both
SroGdF; and SroEuF; crystallize in the form of cubic Fm 3 m structure
[36]. In consistence with this, all SGEF_xBi samples are single-phased
with the cubic structure and Fm 3 m symmetry group. Inside this
structural type, presented schematically in three-dimensional view in
Fig. 1(b), Sr* and Gd>" ions both occupy Wyckoff site 4a with m-3 m
symmetry, and F* ions reside in Wyckoff site 8c with — 43 m symmetry.
In an ideal fluorite-type MX, compound, cations fill 8-coordinate cubic
sites, and anions occupy 4-coordinate tetrahedral sites. Nevertheless, in
SroGdF7, the partial occupancy of both cation and anion sites leads to
deviations from these ideal geometries, resulting in a variety of local
coordination environments for the constituent species [36]. When it
comes to the structural type of SroGdF; and related compounds, there is
a discrepancy between data in different literature reports. Some articles
report on cubic Fm 3 m structure [22,37,38] and others have a tetragonal
structure [19,20,39-41]. However, in several articles that claim the
tetragonal structure of SrpGdF;, the XRD data lack the expected
tetragonal superstructure peaks and instead match a cubic structure —
consistent with the materials studied here. We can assume that further
high-temperature annealing of these hydrothermally synthesized sam-
ples may induce a transition from the disordered cubic fluorite-type
structure to an ordered tetragonal phase. The ionic radii of Gd®*
(Gd3+VHI = 1053;\), Ell3+ (Eu3+vm = 106610\) and Bi?’+ (Bi3+VIII =
1.171&) [42] are comparable, and they have the same oxidation state.
Although Bi®" ions could theoretically substitute either Gd** or Eu*
ions, the systematic decrease in Gd>* content with increasing Bi®*
concentration (refer to Table 1) indicates a preferential substitution of
Gd>" by Bi®" in the SGEF host lattice. This is also supported by the fact
that no additional phases with Eu>* were detected. The structural pa-
rameters of the SGEF_xBi nanophosphors, determined using the built-in
PDXL2 package software, are presented in Table 2. The unit cell
parameter and crystallite size (~20 nm) do not change significantly with
the Bi®* co-doping, compared to the SGEF sample.

The scanning electron microscopy image of the representative
SGEF_1Bi sample in Fig. 1(c) The microstructure observed at 100 k x
magnification reveals agglomerated nanoparticles with quasi-spherical
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morphologies. The particles form porous, loosely packed clusters,
typical for fluoride-based nanophosphors synthesized via wet-chemical
routes [33]. The particle size was estimated by measuring the diam-
eter of more than 100 particles and fitting the histogram in Fig. 1(d)
using a lognormal distribution. The particles exhibit a size distribution
in 30-100 nm range. The average particle size was calculated to be 51 +
4 nm. This value is higher than the crystallite size obtained from the XRD
data, suggesting that each particle consists of several crystallites.

Photoluminescence spectra and decay times

The photoluminescence excitation spectra of the SGEF xBi (x = 0,
0.25, 1, 5, 10 mol%) samples, recorded at the fixed emission wavelength
of 593 nm, are presented in Fig. 2(a). All the peaks correspond to the
intra-4f electronic transitions of the Eu>* ion and are assigned according
to literature [22,36,43,44]. In contrast to previously reported data [36],
characteristic gadolinium peaks at 273 nm and 311 nm were not
detected in the excitation spectra. Although the Eu®" transition at 273
nm, noted as 'Fg — °Hg in Fig. 2(a), coincides with the 857/2 - 61
transition of Gd®*, its absence was proved by recording the excitation
spectra under a 311 nm-emission (shown in Fig. 2(a), inset). This means
there is no energy transfer from Gd>* to Eu®" ions, probably due to the
prevalence of Eu®" ions in the SGEF host. The addition of Bi®" as a co-
dopant causes a moderate increase in excitation intensity of Eu>*
transitions.

The samples’ emission spectra upon a 391 nm-excitation (Fig. 2(b))
expose the typical 4f — 4f transitions of Eu>*, located around 593 nm
(°Do — “F1), 613 nm (°Dg — "Fy), 650 nm (°Dg — “F3), 698 nm (°Dy —
7F4 transition) [29,44]. The 5D0 — 7F1 transition in Eu®" is a magnetic-
dipole transition that is insensitive to the surrounding environment. In
contrast, the 5D0 — 7F, transition is a forced electric-dipole transition
known for its hypersensitivity to changes in the local environment
around the Eu®" ions. The emission spectra of all the samples exhibit the
atypically intense °Dy — ’F4 emission peak around 700 nm, adding a
favorable spectral window that coincides with the deep-red part of the
PAR spectrum [24].

The emission from the °Dy — ’F; transition dominates the emission
spectrum when Eu* ions are situated in crystallographic sites with high
symmetry. Our experimental findings are consistent with these pre-
dictions, as the °Dy — ’F; transition exhibits the utmost intensity, and
the XRD patterns indicate the structure of high symmetry. A valuable
indicator of the variations in local symmetry surrounding the Eu®" ion is
the asymmetry ratio, R. It is defined as the ratio of intensities of the °Dg
— "Fy and ®Dy — "F; transitions, by a following equation: [45]:

1(5Dy—7F,)

R=_ 07 "2
1(5Dy—7F,)

@

Asymmetry ratio values below 1 indicate that the magnetic dipole
transition dominates the emission spectra [45]. As shown in Fig. 2(c) the
asymmetry ratio exhibits a change with the Bi>* content increase, sug-
gesting that the local symmetry of the emitting ion is slightly altered.
The highest asymmetry ratio is observed for the SGEF_1Bi sample.

Fig. 2(d) unveils that Bi®* co-doping of the SGEF nanophosphor
causes emission intensity increase for all examined concentrations,
while for the SGEF_1Bi sample, the integral emission intensity enhances
by 250 %, compared to the Bi-free sample.

To investigate the energy transfer from Bi®* to Eu®", the diffuse
reflectance spectrum, the photoluminescence emission spectra under a
265 nm excitation, along with the corresponding explanation, are pro-
vided in the Supplementary Information (Fig. S1).

Fig. 2(e) demonstrates the normalized photoluminescence lifetime
decay curves of SGEF nanophosphors with varying bismuth concentra-
tions, measured at room temperature. The decay profiles were analyzed
by fitting the experimental data to a simple single-exponential function
to determine the corresponding lifetime () values [46].
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I(t) = Le @

where I(t) represents the corresponding emission intensity at time t, Ip
represents the corresponding emission intensity at time t = 0 (ideally
Ip =1 for normalized I(t)), and 7z is the emission decay constant (the
excited state lifetime). All the excited °Dj state lifetimes are quite long
and alter with the Bi®* content, resembling the emission intensity
change (see Fig. 2(f)). The optimized SGEF_1Bi sample exhibits a life-
time value of 9.3 ms.

Similar trends in Figs. 2(c), (d) and (f) indicate that Bi3* co-doping
causes the lattice distortion that further leads to the breaking of the
partially forbidden transitions of Eu®' ions and enhances photo-
luminescent properties [47]. Generally, when the Bi*' content in-
creases, both the emission intensity and lifetime decrease. This decline
may also be attributed to the formation of Bi®* ion clusters at higher
doping levels, which introduce numerous defect states within the crystal
lattice and promote nonradiative recombination pathways [48]. In our
study, the integrated emission intensity and lifetime at x = 10 are higher
than at x = 5 mol% (see Figs. 2(b), (d), (f)). While the 2 % increase in
lifetime falls within the range of experimental error, the integrated in-
tensity shows a more pronounced increase of about 13 %. This indicates
that lattice distortion, along with the relaxation of forbidden Eu®*
transitions, is the principal factor underlying the unusually enhanced
emission intensity observed in the 5-10 mol% Bi®* concentration range.

As reported previously, the SroGdg 2Eug gF7 phosphor (SroGdF;:80
mol% Eu3+) exhibits a quantum efficiency of 60.4 % [36]. In compari-
son, the Bi3+-doped counterpart (SraGdg 2Eug gF7:1 mol% Bi) achieves a
higher quantum efficiency of 67.2 %, clearly demonstrating the positive
influence of Bi* incorporation on the luminescent performance.

Thermal stability and LED fabrication of the optimized SGEF 1Bi
nanophosphor

For horticulture LED applications, the appropriate color of the light
source and the thermal stability of the photoluminescence emission are
important requirements. According to some LED manufacturers, 100 °C
is typically regarded as the maximum operating temperature for LEDs
[49-511, even though temperature stability up to 150 °C is often re-
ported in the literature [52-54]. To evaluate the thermal stability of the
photoluminescence emission, steady-state temperature-dependent pho-
toluminescence measurements were conducted over the 25-200 °C
range with a 25 °C step using the SGEF_1Bi sample pressed into a pellet.
The resulting spectra, displayed in Fig. 3 (a), reveal a minor decrease of
overall emission intensity. From these spectra, thermal stability of the
optimized sample is derived and shown in Fig. 3(b). It is evident that
SGEF_1Bi demonstrates outstanding thermal stability, retaining 99 % of
its room-temperature integrated emission intensity at 100 °C and
maintaining 93 % of its initial emission even at a temperature of 200 °C.
The inset in Fig. 3(b) displays good temporal stability of the two most
dominant emission peaks — at 593 nm (°Dg — 7F; transition) and 700 nm
(5Do - 7F4 transition), extracted from spectra recorded every 5 min,
during 500 min. Thermal cycling test of the SGEF_1Bi nanophosphor,
displayed in Fig. 3(c), proves the thermal stability is preserved even after
10 consecutive heating—cooling cycles.

To evaluate the color of the synthesized nanophosphors, CIE (Com-
mission Internationale de 1'Eclairage) chromaticity coordinates were
derived from the photoluminescence emission spectra. They provide a
standard method for representing and describing colors, and the color is
typically plotted using the (x, y) coordinates on the CIE 1931 chroma-
ticity diagram. The CIE chromaticity coordinates, calculated from the
samples’ emission spectra are shown in Fig. 3(d) and Table 3. The results
reveal that the coordinates remain nearly the same across all composi-
tions, consistently falling within the orange-red region of the chroma-
ticity diagram, thereby ensuring stable emission color.

Finally, the powder sample with the highest emission intensity,
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SGEF_1Bi, was mixed with a ceramic binder and pressed onto a 395 nm
near-UV LED chip to authenticate the application potential of these
phosphors in LEDs. Photographs of the fabricated LED device, shown in
Fig. 4(a), display strong pinkish violet light emission when the power
supply is on. The emission spectrum of this LED system is presented in
Fig. 4(b). The characteristic europium emission transitions in the red
and deep-red spectral range are clearly visible. Dashed line in Fig. 4(b).
represents the emission spectrum of a 395 nm chip. Two peaks around
400 nm are the result of the chip’s emission and europium’s absorption
transition of ’Fg — °Lg at 391 nm (refer to excitation spectrum in Fig. 2
(a)). Eu®" strongly absorbs energy from the chip’s emission peak,
resulting in a doublet near 400 nm.

Conclusion

This study reports the synthesis of SryGdgoEuggF; nanoparticles
doped with varying concentrations of Bi>" by the hydrothermal method.
The excitation spectra of SGEF xBi nanophosphors (Aey; = 593 nm)
exhibit characteristic intra-4f electronic transitions of the Eu®* ions. The
emission spectra upon 391 nm excitation unveil orange/red and deep-
red emission of Eu®", with the most dominant °Dg — ’F; transition (as
expected for the cubic structure), and the atypically intense 5Dy - "Fy4
transition. The addition of Bi>" ions in different concentrations in SGEF
phosphors induces enhancement of Eu®* emission, with 1 mol% being
the optimal concentration. For the optimized sample, the integrated
emission intensity amplifies by a stunning 250 %, while further addition
of Bi** (up to 10 mol%) leads to the improvement of 60 %. The calcu-
lated asymmetry ratio changes moderately with Bi>* content, indicating
a disturbance in the local symmetry around the emitting Eu®* ions. The
luminescence lifetime exhibits a similar dependence on Bi®* concen-
tration. However, above 1 mol% Bi*>* doping, emission intensities and
lifetime values decrease due to concentration quenching and Bi®" clus-
tering, which introduces defects and promotes nonradiative recombi-
nation. The calculated CIE coordinates are in the red portion of the color
diagram, while the thermal stability of emission is exceptional — 99 % of
the room-temperature emission is maintained at 100 °C and 93 % at a
temperature of 200 °C. These findings prove that Bi®" activated
SroGdg 2Eug gF; nanophosphors provide favorable spectral features,
suitable for LED applications in horticulture. Upcoming research efforts
will focus on evaluation of the impact of these nanophosphors on plant
growth in relevant environment.
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